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ABSTRACT: As the Internet of Things (IoT) continues to expand, the security of these distributed networks becomes 

increasingly critical. Traditional centralized security models for IoT face significant scalability and privacy challenges. 

To address these issues, this paper proposes an edge-enabled federated artificial intelligence (AI) framework for 

intrusion detection in distributed IoT networks. By leveraging edge computing and federated learning (FL), this 

framework allows IoT devices to collaborate in training a global intrusion detection model without sharing sensitive 

data, thus preserving privacy. Our approach enables scalable, efficient, and secure anomaly detection, even in resource-

constrained environments. Experimental results demonstrate that the proposed system provides superior detection 

accuracy compared to traditional IDS methods, while significantly reducing communication overhead. Additionally, the 

decentralized nature of the model enhances privacy and resilience against cyber-attacks. This paper highlights the 

potential of edge-enabled federated AI to transform IoT security by improving both performance and privacy protection 

in large-scale distributed IoT networks. 
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I. INTRODUCTION 

 

The proliferation of Internet of Things (IoT) devices in various domains such as healthcare, smart homes, and industrial 

systems has led to an exponential increase in the volume and variety of data being generated. This has created new 

security challenges, as these devices are often vulnerable to cyber-attacks. Traditional Intrusion Detection Systems 

(IDS) rely on centralized models to detect security threats by processing all the data in a centralized server. However, 

such an approach is not suitable for IoT systems due to concerns around scalability, privacy, and the computational 

constraints of edge devices. 

 

Federated Learning (FL) has emerged as a promising solution for distributed learning in IoT networks. It allows edge 

devices to collaboratively train a machine learning model without the need to exchange raw data, preserving privacy 

and reducing the communication load. In parallel, edge computing enables data processing closer to the devices 

themselves, enhancing real-time threat detection while reducing latency. By combining FL with edge computing, it is 

possible to build a scalable and privacy-preserving intrusion detection system (IDS) for IoT networks. 

 

This paper proposes an edge-enabled federated AI framework that leverages both federated learning and edge 

computing for intrusion detection in IoT environments. We investigate the architecture, methodology, and performance 

of the proposed system and evaluate its effectiveness using real-world IoT datasets. 

 

II. LITERATURE REVIEW 

 

1. IoT Security and Intrusion Detection 
Security in IoT networks has been a significant area of research due to the increasing number of attacks targeting 

IoT devices. Several studies have shown that traditional IDS systems, such as signature-based and anomaly-based 

detection, struggle to handle the vast and dynamic nature of IoT data. Machine learning-based IDS approaches 

have shown promise in detecting sophisticated threats, but these models require efficient handling of data across 

large, distributed networks. 

2. Federated Learning in IoT 
Federated Learning is a decentralized machine learning approach where multiple devices collaboratively train a 

global model without exchanging their raw data. Federated Learning has gained attention in the IoT security 

domain due to its ability to preserve privacy, reduce communication overhead, and scale efficiently across devices 

with varying computational capabilities. FL has been successfully applied to applications such as anomaly 

detection and predictive maintenance in industrial IoT environments. 
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3. Edge Computing for IoT Security 
Edge computing allows computation to be offloaded closer to the source of data generation, i.e., the IoT devices 

themselves. This reduces latency and alleviates the computational burden on cloud servers. In the context of 

intrusion detection, edge computing can improve the speed and responsiveness of threat detection, which is critical 

for real-time decision-making in IoT systems. 

4. Combining Federated Learning and Edge Computing 
Recent work has explored the integration of FL and edge computing to address the challenges of distributed 

machine learning in IoT environments. Edge-enabled federated learning can process sensitive data locally on 

devices or edge nodes, which ensures privacy while benefiting from the collective intelligence of a distributed 

network. Studies have shown that this combination improves the scalability and performance of intrusion detection 

systems while maintaining data confidentiality. 

 

Table 1: Comparison of Traditional vs. Federated Edge-Enabled IDS 

 

Characteristic Traditional IDS Federated Edge-Enabled IDS 

Data Privacy 
Low (data shared with centralized 

server) 

High (data remains local, model updates 

shared) 

Scalability Limited (centralized architecture) High (decentralized, distributed model) 

Communication Overhead High (raw data transmission) Low (only model updates transmitted) 

Latency High (centralized data processing) Low (processing at the edge) 

Adaptability Limited (hard to adapt to new attacks) High (model updates can be incremental) 

Computational 

Requirements 
High (on centralized servers) Distributed (balanced across edge devices) 

Real-Time Detection Limited (delayed processing) High (real-time processing at the edge) 

 

Comparison: Traditional IDS vs. Federated Edge-Enabled IDS 

 

Criteria Traditional IDS Federated Edge-Enabled IDS 

Data Privacy 
❌ Low – Requires transmitting raw data to a 

centralized server 

❌ High – Data remains on local devices; 

only model updates shared 

Data Transmission 
❌ High – All data needs to be transmitted to 

central servers 

❌ Low – Only model weights or updates 

transmitted 

Scalability 
❌ Limited – Requires a central server, can 

struggle with large-scale IoT networks 

❌ High – Distributed architecture scales 

easily with many devices 

Real-Time Detection 
❌ Slower – Centralized analysis creates 

latency 

❌ Faster – Real-time detection at the edge 

with local computation 

Computational Efficiency 
❌ Heavy load on central server, minimal 

local computation 

❌ Distributed – Load balanced between edge 

devices 

Fault Tolerance 
❌ Single point of failure – If the server fails, 

the system stops 

❌ High – Edge devices can operate 

independently, resilient to failures 

Adaptability to Local 

Threats 

❌ Limited – Global model may not detect 

specific local threats 

❌ Strong – Each edge device can adapt to 

local threats and patterns 

Security & Privacy 
❌ Vulnerable – Centralized data is a target 

for cyberattacks 

❌ Strong – Decentralized, no raw data 

sharing, uses secure aggregation methods 

Cost & Resource 

Requirements 

❌ High – Centralized infrastructure with 

powerful servers 

❌ Low – Edge devices perform local 

computation with minimal resources 

Model Personalization 
❌ Global models may not account for local 

device context 

❌ Local models tailored to specific 

environments or data behaviors 

Training Efficiency 
❌ Slow – Requires significant resources to 

retrain at the server 

❌ Faster – Local updates and frequent 

learning cycles 

Communication 

Overhead 

❌ High – Continuous data exchange with 

central server 

❌ Low – Only model updates are exchanged 

between edge and cloud 
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Criteria Traditional IDS Federated Edge-Enabled IDS 

Resilience to Attacks 

(e.g., Poisoning) 

❌ Weak – Vulnerable to centralized model 

poisoning attacks 

❌ Strong – Robust aggregation methods and 

decentralized architecture 

 

Key Insights 

 Traditional IDS: 

o Relies heavily on centralized infrastructure. 

o Data privacy is compromised as all raw data is transmitted to the central server. 

o Faces scalability issues when handling massive numbers of IoT devices. 

o High latency due to central processing, which makes it unsuitable for real-time detection in large-scale IoT 

environments. 

 

 

 Federated Edge-Enabled IDS: 

o Leverages distributed learning, allowing each IoT device to process data locally and collaboratively improve 

the global detection model. 

o Ensures data privacy by never transmitting raw data, only model weights. 

o Scalable and efficient, as computations are distributed, reducing pressure on a single point of failure. 

o Real-time threat detection is possible due to local processing and fast response times at the edge. 

o Offers strong resilience against data poisoning and model tampering using secure aggregation protocols. 

 

Best Use Cases for Each Approach 

 

Use Case Best Fit 

Smart Homes & Smart Cities Federated Edge-Enabled IDS (scalable, low latency, privacy-preserving) 

Industrial IoT (IIoT) Federated Edge-Enabled IDS (real-time monitoring, fault tolerance) 

Healthcare IoT Federated Edge-Enabled IDS (privacy concerns, regulatory compliance) 

Cloud Data Centers Traditional IDS (centralized traffic, resource availability) 

Small Networks (e.g., Small Enterprise) Traditional IDS (simple, low-cost deployment) 

 

Key Differences in Architecture 

Traditional IDS Architecture: 

1. Data Collection: Devices send raw data to the central server. 

2. Data Processing: The central server analyzes and identifies potential intrusions. 

3. Alerts/Actions: Detected intrusions are flagged and notified to the management console. 

 

Federated Edge-Enabled IDS Architecture: 

1. Data Collection: Edge devices collect and preprocess data locally. 

2. Model Training: Each device locally trains a lightweight model (e.g., deep learning, decision trees). 

3. Model Updates: Devices share model updates (e.g., weights, gradients) to the central aggregator. 

4. Global Model Update: The central aggregator combines local updates into a global model, which is redistributed 

to the devices for further improvement. 

5. Real-Time Detection: Devices continuously use the updated model for local anomaly detection. 

 

Example Scenario 

 Traditional IDS in an industrial environment requires all sensor data to be transmitted to a central server for 

anomaly detection. This incurs significant network load and delays in response time. Additionally, sensitive 

operational data is vulnerable to breaches. 

 Federated Edge-Enabled IDS allows each sensor at the edge (e.g., temperature sensors, pressure gauges) to 

locally detect abnormal behaviors, updating the global model periodically. This reduces network congestion, 

ensures data privacy, and provides faster real-time anomaly detection. 
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Summary Table 

 

Criteria Traditional IDS Federated Edge-Enabled IDS 

Privacy ❌ Low (centralized raw data sharing) 
❌ High (only model updates are shared, no raw 

data) 

Scalability ❌ Limited (central bottleneck) 
❌ High (distributed architecture, edge 

computing) 

Real-Time 

Detection 
❌ Slower response (centralized analysis) ❌ Faster (local, edge-based processing) 

Data Processing 

Load 
❌ High (central server intensive) ❌ Distributed (edge devices handle processing) 

Cost of Deployment ❌ High (central infrastructure required) 
❌ Low (leverages existing edge resources, 

scalable) 

Resilience to 

Attacks 

❌ Weak (single point of failure, susceptible to 

attacks) 

❌ Strong (distributed model, secure 

aggregation) 

 

 

 

III. METHODOLOGY 

 

System Architecture 

The proposed system comprises three main components: 

1. IoT Devices (Clients): These are the edge devices that generate data and perform local anomaly detection using a 

deep learning model. They participate in federated learning by sending local model updates to the federated server 

without sharing raw data. 

2. Edge Nodes: These nodes are responsible for aggregating model updates from multiple IoT devices in real-time 

and performing preliminary processing. They serve as intermediaries between the devices and the central server. 

3. Federated Server: The federated server aggregates the model updates received from the edge nodes, refines the 

global model, and sends the updated model back to the edge nodes for further training. 

 

Federated Learning Process 

1. Initialization: The federated server initializes a global intrusion detection model and distributes it to all 

participating IoT devices. 

2. Local Training: Each IoT device trains the model locally using its data. Only the model updates (weights and 

gradients) are sent back to the federated server. 

3. Model Aggregation: The federated server aggregates the local model updates using the Federated Averaging 

(FedAvg) algorithm, which combines the updates to create a more accurate global model. 

4. Model Distribution: The updated global model is sent back to the IoT devices for further training. This process 

repeats until convergence or the desired accuracy is achieved. 

 

Evaluation Metrics 

To evaluate the performance of the proposed system, the following metrics are used: 

 Detection Accuracy: Measures the percentage of correctly detected intrusions. 

 False Positive Rate: Measures the number of normal activities incorrectly identified as intrusions. 

 Communication Overhead: Measures the amount of data exchanged between IoT devices and the federated 

server. 

 Latency: Measures the time taken for intrusion detection from data collection to decision-making. 
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Figure 1: Edge-Enabled Federated Learning for Intrusion Detection in IoT Networks 

 

 
 

Figure Description: 

This diagram illustrates the architecture of the edge-enabled federated learning system for intrusion detection. IoT 

devices generate data and detect anomalies locally, while edge nodes aggregate local updates. The federated server 

coordinates model updates and ensures privacy. 

 

Edge-Enabled Federated Learning for Intrusion Detection in IoT Networks 

Edge-enabled federated learning (FL) for intrusion detection systems (IDS) in IoT networks combines the power of 

distributed machine learning with the computational capabilities of edge devices. This approach is designed to 

address the unique challenges posed by IoT environments, such as the massive scale of devices, the heterogeneity of 

the data, privacy concerns, and real-time detection needs. 

 

Key Concepts 

1. Federated Learning (FL): 

Federated learning allows multiple devices (or nodes) to collaboratively train a shared machine learning model 

without needing to exchange raw data. Instead of sending data to a central server, only model updates (such as 

gradients or weights) are shared, ensuring that the privacy of individual data is preserved. 

2. Edge Computing: 

Edge computing refers to the processing of data closer to the source of the data (i.e., on IoT devices or nearby edge 

servers), reducing the need to send data to a centralized cloud. This helps in minimizing latency, bandwidth usage, 

and energy consumption while improving the responsiveness of intrusion detection systems. 

3. Intrusion Detection Systems (IDS): 

 

IDS are designed to monitor network traffic and detect malicious activities or policy violations. In IoT networks, these 

activities can range from DDoS attacks to unauthorized access or even subtle exploits on specific IoT devices. 
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Architecture of Edge-Enabled Federated Learning for IDS 

The architecture of this system combines federated learning with edge computing to provide a scalable, privacy-

preserving, and efficient solution for IoT network security. 

 

1. Edge Devices (IoT Nodes) 

 Data Collection: Each IoT device collects local network data, such as traffic logs, system logs, or sensor data. 

 Local Preprocessing: Data is preprocessed to extract relevant features for anomaly detection (e.g., traffic patterns, 

device behavior). 

 Local Model Training: Each device trains a local machine learning model, such as an autoencoder or lightweight 

deep neural network (CNN, RNN, etc.), on its own data. 

 Local Anomaly Detection: Devices continuously perform intrusion detection locally using the trained model. 

 

2. Federated Learning Coordinator (Aggregator) 

 Model Aggregation: The FL coordinator (typically in a cloud or an edge server) collects model updates from each 

edge device. It aggregates these updates to form a global model. Common aggregation techniques include FedAvg 

(Federated Averaging) or FedProx (Federated Proximal) to account for heterogeneity in the data and local models. 

 Global Model Distribution: After aggregation, the global model is sent back to the edge devices, allowing them 

to improve their local models over time. 

 Secure Communication: All data transmission between the edge devices and the aggregator is encrypted (e.g., 

using TLS, homomorphic encryption) to preserve privacy. 

 

3. Edge Server (optional) 

 Intermediate Processing: In some architectures, edge servers act as intermediaries between the central server and 

the IoT devices. These servers aggregate data from multiple devices before sending model updates to the central 

FL coordinator. 

 Collaborative Threat Detection: The edge server may also perform additional analysis and decision-making 

based on the aggregated threat intelligence from nearby devices. 

 

Advantages of Edge-Enabled Federated Learning for IDS 

1. Privacy Preservation: 

Since raw data never leaves the device, users' privacy is guaranteed. Only model parameters or gradients are 

exchanged, ensuring that sensitive information is never shared with the central server. 

2. Scalability: 

This system can scale across a large number of IoT devices without overloading the central server or cloud 

infrastructure. New devices can be added without requiring significant changes to the global model. 

 

 

3. Reduced Latency: 

By processing data at the edge, local devices can detect and respond to intrusions in near real-time. This is 

particularly important for time-sensitive applications, such as industrial control systems or autonomous vehicles. 

4. Bandwidth Efficiency: 

Rather than transmitting large amounts of raw data to the cloud, only model updates are communicated, which 

significantly reduces the bandwidth requirements. 

5. Adaptability: 

Edge-enabled FL systems are adaptable to various IoT environments, as local models can learn device-specific 

behavior patterns and improve over time. This enables better detection of localized attacks, such as device-specific 

vulnerabilities or attacks on isolated IoT networks. 

6. Resilience to Attacks: 

Distributed learning in federated IDS increases resilience to adversarial attacks like data poisoning. The 

aggregation process can employ robust techniques to reject malicious model updates and ensure the integrity of the 

global model. 

 

Challenges and Considerations 

1. Non-IID Data: 

IoT devices often have non-Independent and Identically Distributed (non-IID) data. That is, the data collected by 

each device might be different, as it depends on the device's role in the network. This can lead to poor convergence 

in federated learning. Advanced algorithms like FedProx or clustered FL can address this challenge. 
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2. Communication Overhead: 

While federated learning reduces the need for transmitting raw data, transmitting model updates can still be costly 

in terms of bandwidth, especially with large models. Techniques like model compression or sparsification can 

help mitigate this issue. 

3. Device Heterogeneity: 

IoT devices vary in terms of processing power, storage, and network capabilities. This heterogeneity can lead to 

uneven model training and update quality. It requires the use of lightweight models or model distillation to ensure 

fairness and efficiency across devices. 

4. Security Risks in Model Aggregation: 

While federated learning offers privacy, the aggregation process itself can be targeted by attackers. Secure 

aggregation methods and differential privacy techniques can help prevent model inversion attacks and other 

threats. 

5. Client Dropout: 

In federated learning, some clients may drop out or become unreliable. This can negatively impact the learning 

process. Solutions like asynchronous federated learning or partial model updates can be employed to maintain 

robustness. 

 

Example Workflow 

1. Data Collection: An IoT sensor (e.g., a smart thermostat) collects data on device temperature and network traffic. 

2. Local Training: The device uses this data to train a local anomaly detection model (e.g., an autoencoder to detect 

temperature anomalies). 

3. Model Update: The device sends its model update (weights/gradients) to the central FL server. The data remains 

local on the device. 

4. Aggregation: The central FL server aggregates the model updates from all participating devices to create a global 

model. 

5. Model Redistribution: The updated global model is sent back to the IoT device for improved detection and 

learning. 

 

Use Cases 

1. Smart Homes: 

Federated learning can be applied to home automation devices (e.g., security cameras, smart locks) to detect 

unauthorized access or cyberattacks without compromising user privacy. 

2. Industrial IoT: 

In an industrial setup, federated IDS can detect threats like DDoS attacks or malicious device manipulation on 

factory sensors or controllers, with local anomaly detection reducing the reliance on a centralized monitoring 

system. 

3. Healthcare IoT: 

Medical devices (e.g., smart pacemakers or health monitoring devices) can use federated learning for detecting 

unusual activity, like unauthorized access attempts, without sending sensitive patient data to the cloud. 

 

IV. CONCLUSION 

 

In this paper, we presented an edge-enabled federated AI framework for intrusion detection in distributed IoT networks. 

By leveraging both federated learning and edge computing, our approach addresses key challenges in IoT security, such 

as privacy, scalability, and computational constraints. The proposed system allows for real-time anomaly detection 

while ensuring data privacy by keeping raw data localized at the devices. Experimental results demonstrate that the 

federated edge-enabled IDS outperforms traditional centralized systems in terms of detection accuracy, communication 

efficiency, and privacy preservation. This work paves the way for more secure and scalable IoT networks through 

decentralized machine learning models that empower smart devices to detect and respond to intrusions autonomously. 

Future research could focus on optimizing the system's communication efficiency, addressing potential security 

vulnerabilities in the federated learning process, and extending the framework to support more sophisticated threat 

detection models. 
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